Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370666

RESUMO

Albendazole and ivermectin are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channel (GluCl) genes, but it is unknown whether these genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required loss of two GluCl genes (avr-14 and avr-15) or loss of three GluCl genes (avr-14, avr-15, and glc-1). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.

2.
Nucleic Acids Res ; 52(D1): D850-D858, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37855690

RESUMO

Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.


Assuntos
Caenorhabditis , Bases de Dados Genéticas , Animais , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis elegans/genética , Genoma , Estudo de Associação Genômica Ampla , Genômica
3.
BMC Genomics ; 24(1): 486, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626289

RESUMO

BACKGROUND: The nematode Caenorhabditis briggsae has been used as a model in comparative genomics studies with Caenorhabditis elegans because of their striking morphological and behavioral similarities. However, the potential of C. briggsae for comparative studies is limited by the quality of its genome resources. The genome resources for the C. briggsae laboratory strain AF16 have not been developed to the same extent as C. elegans. The recent publication of a new chromosome-level reference genome for QX1410, a C. briggsae wild strain closely related to AF16, has provided the first step to bridge the gap between C. elegans and C. briggsae genome resources. Currently, the QX1410 gene models consist of software-derived gene predictions that contain numerous errors in their structure and coding sequences. In this study, a team of researchers manually inspected over 21,000 gene models and underlying transcriptomic data to repair software-derived errors. RESULTS: We designed a detailed workflow to train a team of nine students to manually curate gene models using RNA read alignments. We manually inspected the gene models, proposed corrections to the coding sequences of over 8,000 genes, and modeled thousands of putative isoforms and untranslated regions. We exploited the conservation of protein sequence length between C. briggsae and C. elegans to quantify the improvement in protein-coding gene model quality and showed that manual curation led to substantial improvements in the protein sequence length accuracy of QX1410 genes. Additionally, collinear alignment analysis between the QX1410 and AF16 genomes revealed over 1,800 genes affected by spurious duplications and inversions in the AF16 genome that are now resolved in the QX1410 genome. CONCLUSIONS: Community-based, manual curation using transcriptome data is an effective approach to improve the quality of software-derived protein-coding genes. The detailed protocols provided in this work can be useful for future large-scale manual curation projects in other species. Our manual curation efforts have brought the QX1410 gene models to a comparable level of quality as the extensively curated AF16 gene models. The improved genome resources for C. briggsae provide reliable tools for the study of Caenorhabditis biology and other related nematodes.


Assuntos
Caenorhabditis , Humanos , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Éxons , Sequência de Aminoácidos , Perfilação da Expressão Gênica
4.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292880

RESUMO

Background: The nematode Caenorhabditis briggsae has been used as a model for genomics studies compared to Caenorhabditis elegans because of its striking morphological and behavioral similarities. These studies yielded numerous findings that have expanded our understanding of nematode development and evolution. However, the potential of C. briggsae to study nematode biology is limited by the quality of its genome resources. The reference genome and gene models for the C. briggsae laboratory strain AF16 have not been developed to the same extent as C. elegans . The recent publication of a new chromosome-level reference genome for QX1410, a C. briggsae wild strain closely related to AF16, has provided the first step to bridge the gap between C. elegans and C. briggsae genome resources. Currently, the QX1410 gene models consist of protein-coding gene predictions generated from short- and long-read transcriptomic data. Because of the limitations of gene prediction software, the existing gene models for QX1410 contain numerous errors in their structure and coding sequences. In this study, a team of researchers manually inspected over 21,000 software-derived gene models and underlying transcriptomic data to improve the protein-coding gene models of the C. briggsae QX1410 genome. Results: We designed a detailed workflow to train a team of nine students to manually curate genes using RNA read alignments and predicted gene models. We manually inspected the gene models using the genome annotation editor, Apollo, and proposed corrections to the coding sequences of over 8,000 genes. Additionally, we modeled thousands of putative isoforms and untranslated regions. We exploited the conservation of protein sequence length between C. briggsae and C. elegans to quantify the improvement in protein-coding gene model quality before and after curation. Manual curation led to a substantial improvement in the protein sequence length accuracy of QX1410 genes. We also compared the curated QX1410 gene models against the existing AF16 gene models. The manual curation efforts yielded QX1410 gene models that are similar in quality to the extensively curated AF16 gene models in terms of protein-length accuracy and biological completeness scores. Collinear alignment analysis between the QX1410 and AF16 genomes revealed over 1,800 genes affected by spurious duplications and inversions in the AF16 genome that are now resolved in the QX1410 genome. Conclusions: Community-based, manual curation using transcriptome data is an effective approach to improve the quality of software-derived protein-coding genes. Comparative genomic analysis using a related species with high-quality reference genome(s) and gene models can be used to quantify improvements in gene model quality in a newly sequenced genome. The detailed protocols provided in this work can be useful for future large-scale manual curation projects in other species. The chromosome-level reference genome for the C. briggsae strain QX1410 far surpasses the quality of the genome of the laboratory strain AF16, and our manual curation efforts have brought the QX1410 gene models to a comparable level of quality to the previous reference, AF16. The improved genome resources for C. briggsae provide reliable tools for the study of Caenorhabditis biology and other related nematodes.

5.
Genome Biol Evol ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35348662

RESUMO

The publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus. However, despite being widely used, the currently available C. briggsae reference genome is substantially less complete and structurally accurate than the C. elegans reference genome. Here, we used high-coverage Oxford Nanopore long-read and chromosome-conformation capture data to generate chromosome-level reference genomes for two C. briggsae strains: QX1410, a new reference strain closely related to the laboratory AF16 strain, and VX34, a highly divergent strain isolated in China. We also sequenced 99 recombinant inbred lines generated from reciprocal crosses between QX1410 and VX34 to create a recombination map and identify chromosomal domains. Additionally, we used both short- and long-read RNA sequencing data to generate high-quality gene annotations. By comparing these new reference genomes to the current reference, we reveal that hyper-divergent haplotypes cover large portions of the C. briggsae genome, similar to recent reports in C. elegans and C. tropicalis. We also show that the genomes of selfing Caenorhabditis species have undergone more rearrangement than their outcrossing relatives, which has biased previous estimates of rearrangement rate in Caenorhabditis. These new genomes provide a substantially improved platform for comparative genomics in Caenorhabditis and narrow the gap between the quality of genomic resources available for C. elegans and C. briggsae.


Assuntos
Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Cromossomos , Genoma , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...